การคูณ
จากวิกิพีเดีย สารานุกรมเสรี
บทความนี้ไม่มีการอ้างอิงจากเอกสารอ้างอิงหรือแหล่งข้อมูล โปรดช่วยพัฒนาบทความนี้โดยเพิ่มแหล่งข้อมูลน่าเชื่อถือ เนื้อหาที่ไม่มีการอ้างอิงอาจถูกคัดค้านหรือนำออก |
"คูณ" เปลี่ยนทางมาที่นี่ บทความนี้เกี่ยวกับคณิตศาสตร์ สำหรับพระสงฆ์ ดูที่ พระเทพวิทยาคม (คูณ ปริสุทโธ)
การคูณ คือการดำเนินการทางคณิตศาสตร์อย่างหนึ่ง ทำให้เกิดการเพิ่มหรือลดจำนวนจำนวนหนึ่งเป็นอัตรา การคูณเป็นหนึ่งในสี่ของ
การดำเนินการพื้นฐานของเลขคณิตมูลฐาน (การดำเนินการอย่างอื่นได้แก่ การบวก การลบ และการหาร)
การดำเนินการพื้นฐานของเลขคณิตมูลฐาน (การดำเนินการอย่างอื่นได้แก่ การบวก การลบ และการหาร)
การคูณสามารถนิยามบนจำนวนธรรมชาติว่าเป็นการบวกที่ซ้ำๆ กัน ตัวอย่างเช่น 3 คูณด้วย 4 (หรือเรียกโดยย่อว่า 3 คูณ 4) หมายถึงการบวกจำนวน 4 เข้าไป 3 ชุด ดังนี้
สำหรับการคูณของจำนวนตรรกยะ (เศษส่วน) และจำนวนจริง ก็นิยามโดยกรณีทั่วไปที่เป็นระบบของแนวความคิดพื้นฐานดังกล่าว
การคูณอาจมองได้จากการนับวัตถุที่จัดเรียงกันเป็นรูปสี่เหลี่ยมผืนผ้า (สำหรับจำนวนธรรมชาติ) หรือการหาพื้นที่ของรูปสี่เหลี่ยมผืนผ้าโดยการหนดความยาวของด้านมาให้ (สำหรับจำนวนทั่วไป) ส่วนกลับของการคูณคือการหาร ในเมื่อ 3 คูณด้วย 4 เท่ากับ 12 ดังนั้น 12 หารด้วย 4 ก็จะเท่ากับ 3 เป็นต้น
การคูณสามารถนิยามให้ขยายไปบนจำนวนชนิดอื่นเช่นจำนวนเชิงซ้อน และมีโครงสร้างที่เป็นนามธรรมมากขึ้นเช่นเมทริกซ์
เนื้อหา
[ซ่อน]สัญกรณ์และคำศัพท์เฉพาะทาง[แก้]
โดยทั่วไปการคูณสามารถเขียนโดยใช้เครื่องหมายคูณ (×) ระหว่างจำนวนทั้งสอง (ในรูปแบบสัญกรณ์เติมกลาง) ตัวอย่างเช่น
-
- (อ่านว่า 2 คูณ 3 เท่ากับ 6)
อย่างไรก็ตามก็ยังมีการใช้สัญกรณ์อื่นๆ แทนการคูณโดยทั่วไป อาทิ
- ใช้จุดกลาง (·) หรือไม่ก็มหัพภาค (.) อย่างใดอย่างหนึ่ง เช่น 5 · 2 หรือ 5 . 2 การใช้จุดกลางเป็นมาตรฐานในสหรัฐอเมริกา สหราชอาณาจักร และประเทศอื่นๆ ที่ใช้มหัพภาคเป็นจุดทศนิยม แต่ในบางประเทศที่ใช้จุลภาคเป็นจุดทศนิยม จะใช้มหัพภาคเป็นการคูณแทน
- ใช้ดอกจัน (*) เช่น
5*2
มักใช้ในภาษาโปรแกรมเพราะเครื่องหมายนี้ปรากฏอยู่บนทุกแป้นพิมพ์ และสามารถดูได้ง่ายบนจอมอนิเตอร์รุ่นเก่า การใช้เครื่องหมายนี้แทนการคูณเริ่มมีขึ้นตั้งแต่ภาษาฟอร์แทรน - ในพีชคณิต การคูณที่เกี่ยวกับตัวแปรมักจะเขียนให้อยู่ติดกัน เรียกว่า juxtaposition ตัวอย่างเช่น xy หมายถึง x คูณ y และ 5x หมายถึง 5 คูณ x เป็นต้น สัญกรณ์เช่นนี้สามารถใช้กับจำนวนที่ครอบด้วยวงเล็บ เช่น หรือ ก็จะหมายถึง 5 คูณ 2
- ในการคูณเมทริกซ์ มีความแตกต่างระหว่างการใช้สัญลักษณ์กากบาทกับจุด กากบาทใช้แทนการคูณเวกเตอร์ ในขณะที่จุดใช้แทนการคูณสเกลาร์ ดังนั้นการตั้งชื่อเรียกจึงแตกต่างกันคือผลคูณไขว้และผลคูณจุดตามลำดับ
จำนวนที่ถูกคูณโดยทั่วไปเรียกว่า ตัวประกอบ (factor) หรือ ตัวตั้งคูณ (multiplicand) ส่วนจำนวนที่นำมาคูณเรียกว่า ตัวคูณ (multiplier) ตัวคูณของตัวแปรหรือนิพจน์ในพีชคณิตจะเรียกว่า สัมประสิทธิ์ (coefficient) ซึ่งจะเขียนไว้ทางซ้ายของตัวแปรหรือนิพจน์ เช่น 3 เป็นสัมประสิทธิ์ของ 3xy2
ผลลัพธ์ที่เกิดจากการคูณเรียกว่า ผลคูณ (product) หรือเรียกว่า พหุคูณ (multiple) ของตัวประกอบแต่ละตัวที่เป็นจำนวนเต็ม ตัวอย่างเช่น 15 คือผลคูณของ 3 กับ 5 และในขณะเดียวกัน 15 ก็เป็นทั้งพหุคูณของ 3 และพหุคูณของ 5 ด้วย
ผลคูณของลำดับ[แก้]
ถ้าพจน์แต่ละพจน์ของผลคูณไม่ได้เขียนออกมาทั้งหมด เราอาจจะใช้เครื่องหมายจุดไข่ปลาแทนพจน์ที่หายไป เช่นเดียวกับการดำเนินการอื่นๆ (เช่น การบวก) เช่น ผลคูณของจำนวนธรรมชาติ ตั้งแต่ 1-100 อาจเขียน . และสามารถเขียนให้เครื่องหมายจุดไข่ปลาอยู่บริเวณกึ่งกลางแนวตั้งของแถวได้อีกด้วย คือ .
นอกจากนี้แล้ว ผลคูณยังสามารถเขียนได้ด้วยเครื่องหมายผลคูณ ซึ่งมาจาก อักษร Π (Pi) ตัวใหญ่ ในอักษรกรีก. ตัวอย่างเช่น
ตัวห้อยของประโยคสัญลักษณ์ข้างต้นแทนตัวแปรหุ่น (สำหรับประโยคนี้คือ ) และขอบเขตล่าง (); ตัวยกแทนขอบเขตบน () เช่น
เรายังสามารถหาผลคูณที่มีพจน์เป็นอนันต์ได้อีกด้วย เรียกว่าผลคูณอนันต์ ในการเขียน เราจะแทนที่ n ด้านบนด้วยเครื่องหมายอนันต์ (∞). ผลคูณของพจน์จะกำหนดด้วยขีดจำกัดของผลคูณของ พจน์แรก โดย เพิ่มขึ้นโดยไม่มีขอบเขต เช่น
นอกจากนี้ยังสามารถแทน ด้วยจำนวนลบอนันต์
และสำหรับจำนวนเต็ม บางจำนวน สามารถกำหนดได้ทั้งอนันต์และลบอนันต์
นิยาม[แก้]
สำหรับความหมายของการคูณ ผลคูณของจำนวนธรรมชาติ n และ m ใดๆ
กล่าวสั้นๆ คือ 'บวก m เข้ากับตัวเอง n ตัว' สามารถเขียนได้ในลักษณะนี้เพื่อให้ชัดเจนมากขึ้น
- n × m = m + m + m + ... + m
หมายถึงมีจำนวน 'm' n ตัวบวกกันนั่นเอง
- 5 × 2 = 2 + 2 + 2 + 2 + 2 = 10
- 2 × 5 = 5 + 5 = 10
- 4 × 3 = 3 + 3 + 3 + 3 = 12
- 6 × m = m + m + m + m + m + m = 6m
โดยใช้นิยาม เราสามารถพิสูจน์สมบัติของการคูณได้โดยง่ายดาย โดยดูจากสองตัวอย่างข้างต้น เรามีสมบัติว่า จำนวนสองจำนวนที่คูณกันสามารถสลับที่กันได้โดยผลคูณยังคงเดิม เราเรียกสมบัตินี้ว่า สมบัติการสลับที่ และ สมบัตินี้เป็นจริงสำหรับจำนวน x และ y ใดๆ นั่นคือ
- x · y = y · x.
นอกจากนี้ การคูณยังมีสมบัติการเปลี่ยนหมู่อีกด้วย ความหมายสำหรับจำนวน x,y และ z ใดๆ คือ
- (x · y)z = x(y · z).
หมายเหตุจากพีชคณิต: เครื่องหมายวงเล็บ หมายถึง การดำเนินภายในวงเล็บจะต้องกระทำก่อนการดำเนินการภายนอกวงเล็บ
การคูณมีสมบัติการแจกแจง เพราะ
- x(y + z) = xy + xz.
มีสิ่งที่น่าสนใจเกี่ยวกับการคูณกับ 1 นั่นคือ
- 1 · x = x.
เราเรียก 1 ว่า จำนวนเอกลักษณ์
สำหรับเลข 0 เราจะได้
- m · 0 = 0 + 0 + 0 +...+ 0
เมื่อเรานำ '0' m ตัวมาบวกกัน ผลลัพธ์ที่ได้ย่อมเป็นศูนย์ นั่นคือ
- m · 0 = 0
ไม่ว่า m จะเป็นจำนวนใด (แม้กระทั่งอนันต์).
การคูณกับจำนวนลบอาจจะต้องมีการคิดเล็กน้อย เริ่มจากการคูณ (−1) กับจำนวนเต็ม m ใดๆ
- m(−1) = (−1) + (−1) +...+ (−1) = −m
นี่เป็นความจริงที่น่าสนใจว่า จำนวนลบ คือ จำนวนลบหนึ่ง คูณกับจำนวนบวกนั่นเอง เพราะฉะนั้นผลคูณระหว่างจำนวนบวกกับจำนวนลบทำได้โดยการคูณปกติ แล้วคูณด้วย (−1)
- (−1)(−1) = −(−1) = 1
ในขณะนี้ เราสามารถสรุปการคูณระหว่างจำนวนเต็มสองจำนวนใดๆ ได้แล้ว และนิยามนี้ยังขยายไปสำหรับเซตของเศษส่วน หรือ จำนวนตรรกยะ และขยายไปถึงจำนวนจริงและจำนวนเชิงซ้อน
หลายคนอาจสงสัยถ้าบอกว่า ผลคูณของ'ไร้จำนวน' คือ 1
รูปแบบนิยามเรียกซ้ำของการคูณเป็นไปตามกฎ
- x · 0 = 0
- x · y = x + x·(y − 1)
เมื่อ x เป็นจำนวนจริง และ y เป็นจำนวนธรรมชาติ เมื่อเรากำหนดนิยามของการคูณจำนวนธรรมชาติแล้ว เรายังขยายผลไปถึงจำนวนเต็ม จำนวนจริง และจำนวนเชิงซ้อนได้
การคำนวณ[แก้]
วิธีการคูณจำนวนโดยการทดลงกระดาษตามปกติ จำเป็นต้องใช้สูตรคูณที่ท่องจำ ซึ่งเป็นผลคูณของเลข 1−2 หลัก เพื่อให้สามารถตั้งคูณได้ แต่สำหรับวิธีการแบบชาวอียิปต์โบราณไม่เป็นเช่นนั้น ดังที่จะได้กล่าวต่อไป
การคูณจำนวนมากกว่าสองจำนวนบนเลขฐานสิบอาจทำให้เกิดความเบื่อหน่าย และก่อให้เกิดความผิดพลาดได้ง่าย จึงมีการคิดค้นลอการิทึมสามัญ (ลอการิทึมฐานสิบ) เพื่อทำให้คำนวณง่ายขึ้น นอกจากนั้นสไลด์รูลก็เป็นเครื่องมือช่วยคูณจำนวนอย่างรวดเร็ว และได้ผลลัพธ์ที่มีความแม่นยำประมาณสามหลัก และตั้งแต่ต้นคริสต์ศตวรรษที่ 20 ก็มีการประดิษฐ์เครื่องคิดเลขเชิงกล ซึ่งสามารถคูณเลขได้โดยอัตโนมัติถึง 10 หลัก ปัจจุบันนี้ใช้เครื่องคิดเลขอิเล็กทรอนิกส์และคอมพิวเตอร์แทน ซึ่งสามารถช่วยประหยัดเวลาการคูณเลขไปได้อย่างมาก
ขั้นตอนวิธีในประวัติศาสตร์[แก้]
วิธีการคูณหลายวิธีมีการบันทึกไว้เป็นลายลักษณ์อักษรโดยอารยธรรมอียิปต์ กรีซ บาบิโลเนีย ลุ่มแม่น้ำสินธุ และจีน
อียิปต์[แก้]
ดูบทความหลักที่: การคูณแบบอียิปต์โบราณ
วิธีการคูณจำนวนเต็มและเศษส่วนของชาวอียิปต์โบราณ ดังเช่นที่ระบุไว้ใน Ahmes Papyrus เป็นการบวกต่อเนื่องกันและการเพิ่มค่าเป็นสองเท่า ตัวอย่างเช่น การหาผลคูณของ 13 กับ 21 ก่อนอื่นจะต้องเพิ่มค่า 21 เป็นสองเท่า 3 ครั้ง ซึ่งจะได้ 1 × 21 = 21, 2 × 21 = 42, 4 × 21 = 84, 8 × 21 = 168 จากนั้นจึงรวมพจน์ที่เหมาะสมเข้าด้วยกันจนได้ผลคูณ นั่นคือ
13 × 21 = (1 + 4 + 8) × 21 = (1 × 21) + (4 × 21) + (8 × 21) = 21 + 84 + 168 = 273
บาลิโลเนีย[แก้]
เนื่องจากชาวบาบิโลนใช้ระบบเลขเชิงตำแหน่งฐานหกสิบ ซึ่งเทียบได้กับเลขฐานสิบของปัจจุบัน แต่มีสัญลักษณ์แทนเลขโดดในแต่ละหลักถึง 60 ตัว ดังนั้นการคูณของชาวบาบิโลนจึงคล้ายกับวิธีการตั้งคูณในปัจจุบัน แต่เนื่องจากเป็นการยากที่จะจดจำผลคูณที่แตกต่างกันทั้งหมด 60 × 60 จำนวน นักคณิตศาสตร์ชาวบาบิโลนจึงใช้ตารางก[hk[vบ้าบอ บ้าบอ บ้าบอแรกของจำนวนที่สำคัญ n ซึ่งจะได้ n, 2n, ..., 20n ตามด้วยพหุคูณของ 10n นั่นคือ 30n, 40n, และ 50n การคำนวณผลคูณคือการบวกค่าในตารางผลคูณเข้าด้วยกัน เช่น 53n ก็หาได้จากการบวกค่าของ 50n กับ 3n เป็นต้น
จีน[แก้]
ในตำราเรียนคณิตศาสตร์ของจีนชื่อว่า Zhou Pei Suan Ching (周髀算經) เมื่อ 300 ปีก่อนคริสตกาล และหนังสือ The Nine Chapters on the Mathematical Art (九章算術) ได้อธิบายวิธีการคูณโดยการเขียนเป็นตัวหนังสือ ถึงแม้ว่านักคณิตศาสตร์ชาวจีนสมัยก่อนจะใช้ลูกคิดคำนวณด้วยมือทั้งการบวกและการคูณ
ลุ่มแม่น้ำสินธุ[แก้]
นักคณิตศาสตร์ชาวฮินดูในอารยธรรมลุ่มแม่น้ำสินธุในสมัยก่อน ใช้กลวิธีที่หลากหลายเพื่อคำนวณการคูณ ซึ่งการคำนวณส่วนใหญ่จะทำบนกระดานชนวนขนาดเล็ก เทคนิคหนึ่งที่ใช้กันคือการคูณแลตทิซ (lattice multiplication) เริ่มตั้งแต่การวาดตารางขึ้นมาหนึ่งตาราง กำกับด้วยตัวตั้งและตัวคูณลงบนแถวและหลัก แต่ละช่องจะถูกแบ่งออกเป็นสองส่วนตามแนวทแยง เป็นแลตทิซรูปสามเหลี่ยม ซึ่งเฉียงเป็นแนวเดียวกันทุกช่อง จากนั้นแต่ละช่องสี่เหลี่ยมให้เขียนผลคูณของเลขโดดที่กำกับไว้ลงไป ผลคูณของจำนวนจะหาได้จากการรวมแถวที่เป็นแนวเฉียงเข้าด้วยกันทีละหลัก
สมบัติ[แก้]
สำหรับจำนวนจริงและจำนวนเชิงซ้อน รวมทั้งจำนวนธรรมชาติ จำนวนเต็ม และ จำนวนตรรกยะ การคูณมีสมบัติต่อไปนี้:
- สมบัติการสลับที่
- ผลลัพธ์ของการคูณไม่ขึ้นกับลำดับของตัวตั้งและตัวคูณ:
- สมบัติการเปลี่ยนหมู่
- ลำดับการดำเนินการคูณ(หรือการบวก)ไม่มีผลต่อผลลัพธ์:
- สมบัติการแจกแจง
- เป็นจริงกับการคูณเหนือการบวก สมบัตินี้สำคัญมากเพราะใช้ทำให้นิพจน์พีชคณิตอยู่ในรูปอย่างง่าย:
- เอกลักษณ์การคูณ
- เอกลักษณ์การคูณคือ 1 จำนวนใดๆ คูณด้วยหนึ่งได้ผลลัพธ์เป็นจำนวนนั้น อาจเรียกสมบัตินี้ว่าสมบัติเอกลักษณ์:
- สมาชิกศูนย์
- จำนวนใดๆ คูณด้วยศูนย์ ได้ผลลัพธ์เป็นศูนย์ สมบัตินี้เรียกว่าสมบัติการคูณด้วยศูนย์:
- จำนวนธรรมชาติอาจรวมศูนย์หรือไม่ก็ได้
สมบัติบางประการของการคูณอาจเป็นจริงสำหรับจำนวนบางระบบเท่านั้น
- นิเสธ
- ลบหนึ่งคูณกับจำนวนใดๆ เท่ากับตัวผกผันการบวกของจำนวนนั้น
- ลบหนึ่งคูณลบหนึ่งเป็นบวกหนึ่ง
- จำนวนธรรมชาติไม่รวมจำนวนลบ
- ตัวผกผัน
- จำนวน ใดๆ นอกเหนือจากศูนย์ มีตัวผกผันการคูณคือ ที่
- การคงการเรียงอันดับ
- การคูณด้วยจำนวนบวกคงอันดับความมากน้อย:
- ถ้า แล้ว(ถ้า แล้ว )
- การคูณด้วยจำนวนลบสลับอันดับความมากน้อย:
- ถ้า แล้ว(ถ้า แล้ว )
- ไม่มีการเรียงลำดับจำนวนเชิงซ้อน
ระบบคณิตศาสตร์นอกเหนือจากนี้ที่มีการดำเนินการคูณอาจไม่มีสมบัตินี้ทั้งหมด เช่นการคูณไม่มีสมบัติการสลับที่สำหรับเมทริกซ์และควอเทอร์เนียน
ไม่มีความคิดเห็น:
แสดงความคิดเห็น